RESEARCH ACTIVITIES

Bibliography

Peer Reviewed

29. Argyris* E.G., Head S.R. Microarray analysis to examine glycan-related gene expression in primary human cells infected with HIV-1. NCBI-GEO (Gene Expression Omnibus)-Publications, online: June 14, 2011

(* Corresponding author)

Acknowledgments in:

[For manuscript editing]

[For providing primary human monocyte-derived macrophages; hMDM]

[For manuscript editing]

Book Chapters:

Abstracts, Posters Exhibits and Oral Presentations at National and International Meetings:

34. Argyris E.G., Huang, J., Acheampong, E., Zhang, H. and Kevin Jon Williams. Cell associated proteoglycans are involved in HIV-1 attachment and entry into primary human astrocytes (manuscript in preparation, accepted as a poster presentation at the 8th International Symposium on NeuroVirology, San Diego, CA, 10/29-11/2, 2007).

Invited Talks and Lectures:

1. Cellular Factors in HIV-1 Invasion of BBB: From Cell Associated Proteoglycans to APOBEC3G, Temple University-School of Medicine, Dept. of Neuroscience and Center for Neurovirology, Philadelphia, PA, 02/07/2007.

2. Novel Proteoglycan-related Molecular Targets in HIV-1 infection of Primary Human Macrophages: Implications for Neuropathogenesis, 9th International Symposium on NeuroVirology, Miami Beach, FL, 06/05/2009.

GRANT SUPPORT:

Completed Research Support:
Role of Cell Associated Proteoglycans in HIV-1 Neuropathogenesis
The goal of this research study is to examine the specific mechanism(s) of HIV-1 entry into primary
human brain microvascular endothelial cells and the blood-brain barrier and the role of particular classes of cell-associated proteoglycans in viral entry.

Elizabeth Glaser Pediatric AIDS Foundation.
“Porphyrins as Pediatric anti-HIV agents”
The goal of this research project is to examine the mechanism of heme binding to HIV-1 reverse transcriptase (RT) and the inhibitory effect of this compound, as well as that of other synthetic porphyrin analogs on the enzyme. Our further objective, on the basis of the identification of a novel inhibition site on HIV RT, is to develop more effective synthetic metalloporphyrin RT inhibitors for the management of AIDS, and specifically for the treatment of Pediatric HIV infection.